Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Medical Journal ; (24): 757-766, 2022.
Article in English | WPRIM | ID: wpr-927566

ABSTRACT

Acute kidney injury (AKI), characterized by acute renal dysfunction, is an increasingly common clinical problem and an important risk factor in the subsequent development of chronic kidney disease (CKD). Regardless of the initial insults, the progression of CKD after AKI involves multiple types of cells, including renal resident cells and immune cells such as macrophages. Recently, the involvements of macrophages in AKI-to-CKD transition have garnered significant attention. Furthermore, substantial progress has also been made in elucidating the pathophysiological functions of macrophages from the acute kidney to repair or fibrosis. In this review, we highlight current knowledge regarding the roles and mechanisms of macrophage activation and phenotypic polarization, and transdifferentiation in the development of AKI-to-CKD transition. In addition, the potential of macrophage-based therapy for preventing AKI-to-CKD transition is also discussed.


Subject(s)
Humans , Acute Kidney Injury/drug therapy , Disease Progression , Kidney , Macrophages , Renal Insufficiency, Chronic
2.
Acta Physiologica Sinica ; (6): 612-622, 2018.
Article in Chinese | WPRIM | ID: wpr-777223

ABSTRACT

Transforming growth factor-β (TGF-β) is a driving force of renal fibrosis, which may lead to chronic kidney diseases and even end stage renal diseases. By activating canonical and non-canonical signaling pathways, TGF-β promotes the synthesis of extracellular matrix while preventing their degradation. In the injured kidney, TGF-β induces apoptosis, proliferation and fibrotic response of renal cells including epithelial cells, endothelial cells, podocytes, fibroblasts, pericytes and macrophages, and it also promotes transdifferentiation, activation and proliferation of myofibroblasts. Additionally, TGF-β exerts profibrotic effects by interplaying with other signaling pathways like BMP-7, Wnt/β-catenin and MAP kinase. Smad3 is the central pathological gene in renal fibrosis, and epigenetic regulation of TGF-β/Smad3 is a hot topic in kidney field. Although direct targeting TGF-β may cause side effects including tumorigenesis and immune diseases, the therapeutic strategies targeting the balance of downstream Smad3 and Smad7 may prevent or delay the progression of fibrotic kidney disease.


Subject(s)
Humans , Epigenesis, Genetic , Fibrosis , Kidney Diseases , Pathology , Signal Transduction , Smad3 Protein , Metabolism , Smad7 Protein , Metabolism , Transforming Growth Factor beta , Metabolism
3.
Kidney Research and Clinical Practice ; : 4-11, 2012.
Article in English | WPRIM | ID: wpr-156027

ABSTRACT

Renal fibrosis is a hallmark of chronic kidney disease (CKD). It is generally thought that transforming growth factor-beta1 (TGF-beta1) is a key mediator of fibrosis and mediates renal scarring positively by Smad2 and Smad3, but negatively by Smad7. Our recent studies found that in CKD, TGF-beta1 is not a sole molecule to activate Smads. Many mediators such as angiotensin II and advanced glycation end products can also activate Smads via both TGF-beta-dependent and independent mechanisms. In addition, Smads can interact with other signaling pathways, such as the mitogen-activated protein kinase and nuclear factor-kappaB (NF-kappaB) pathways, to regulate renal inflammation and fibrosis. In CKD, Smad2 and Smad3 are highly activated, while Smad7 is reduced or lost. In the context of fibrosis, Smad3 is pathogenic and mediates renal fibrosis by upregulating miR-21 and miR-192, but down-regulating miR-29 and miR-200 families. By contrast, Smad2 and Smad7 are protective. Overexpression of Smad7 inhibits both Smad3-mediated renal fibrosis and NF-kappaB-driven renal inflammation. Interestingly, Smad4 has diverse roles in renal fibrosis and inflammation. The complexity and distinct roles of individual Smads in CKD suggest that treatment of CKD should aim to correct the imbalance of Smad signaling or target the Smad3-dependent genes related to fibrosis, rather than to block the general effect of TGF-beta1. Thus, treatment of CKD by overexpression of Smad7 or targeting Smad3-dependent miRNAs such as downregulation of miR-21 or overexpression of miR-29 may represent novel therapeutic strategies for CKD.


Subject(s)
Humans , Angiotensin II , Cicatrix , Down-Regulation , Fibrosis , Genetic Therapy , Inflammation , MicroRNAs , Protein Kinases , Renal Insufficiency, Chronic , Transforming Growth Factor beta1
SELECTION OF CITATIONS
SEARCH DETAIL